國立澎湖科技大學 114 學年度 第1 學期 電機工程系 (電資碩士班) 公版課綱

課程名稱	學分數	時數	課程說明	教學目標內容	課程內容與範圍	先修 課程
專題討論 (一)	1	2	藉由課堂講授、專題演講、學生專題報 告與討論,提供相關領域知識、觀念與 研究的交流。	1.使學生廣泛接觸相關專業領域的研究現 況、知識、觀念 2.養成專業知識及獨立思考能力	期刊文獻、學術倫理、論文寫作、發明專利、專題演講、學生專題報告與討論	無
類神經網 路	3	3	類神經網路是近代人工智慧的一門重要 的分支,它與模糊集合論以及演化式計 算法,同屬於計算智能的主要研究領 域。	本課程之目標是想讓學生了解類神經網 路之基礎,並藉由類神經網路之實際應 用與操作可讓學生作為更為了解類神經 網路,並提供未來升學研究或進入產業 界等應用領域之基礎。	1. 類神經網路基本認識 2. 類神經網路面面觀 3. 人工智慧與類神經網路簡介 4. ANN方法分類說明 5. 其他類神經網路介紹	無
電力監控系統	3	3	1. 了解電力系統架構與電力系統自動化之應用方法 2. 了解最先進的電力監控系統整合應用與發展趨勢 3. 了解IEC 61850用於電力監控之應用標準 4. 學習規劃及設計以IEC 61850標準建置之電力監控系統 5. 引導學生建立獨立研究及參與團隊專案合作的能力	本課程在教導學生了解完整的電力系統 架構及先進的電力系統自動化之設計與 應用,透過導入IEC 61850標準來規劃及 建置電力自動化系統,讓學生的學習完 全與電力能源產業需求結合。	1. 電力監控系統架構及全球發展趨勢 2. 電力系統控制中心之架構與基本設計 3. 電力系統監控之智慧型感測裝置介紹 4. 電力系統監控之軟體介紹 5. 電力系統監控之通訊標準IEC 61850介紹 6. 電力系統通訊網路架構介紹 7. 變電所自動化監控系統設計	無
太陽光電系統	3	3	1.了解最先進的太陽光電系統整合應用與發展趨勢 2.學習太陽光電系統之整合技術與設計 3.學習以物聯網技術設計太陽光電監控系 統 4.引導學生建立獨立研究及參與團隊專案 合作的能力	本課程在教導學生了解太陽光電系統的 發展在各國能源政策的重要性以及對電 網穩定性的影響,透過導入物聯網技術 的應用,學習太陽光電系統的設計規劃 以及如何建立一套太陽光電系統監控與 維運平台。	1.了解能源產業與國家能源政策趨勢 2.學習太陽光電系統架構與型態 3.太陽光電系統監控及通訊架構設計 4.太陽光電系統通訊協定設計及測試 5.PV Gateway 設計標準及驗證規範 6.太陽光電系統運維平台設計 7.太陽光電系統發電預測概念	無

巨量資料分析	3		1. 巨量資料分析理論 2. 課堂上課/實作 3. 製作期末專題	1. 能學會巨量資料分析的基本理論(知識) 2. 能具備巨量資料分析程式的設計與實作能力(技能) 3. 能具備分組團隊合作精神(態度)	一、課程簡介 二、工具簡介 三、前處理 四、分類分法 五、分群方法 六、迴歸 七、期末專題	Java程式 設計 (一)(二) 、資料庫 管理系統
資料探勘	3	3	教授學生資料探勘的基礎概念與關連分析	3.透過作業與期末專題實作,學生得以研	 - 、Introduction to KDD and Data Mining 二、Data preprocessing 三、Concept description 四、Association Mining 五、Classification 六、Clustering assessment, and partitioning methods 七、Text Mining 八、Data mining applications and trends 	演算法